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This review addresses the long-standing puzzle of how
logic and probability fit together in human reasoning.
Many cognitive scientists argue that conventional logic
cannot underlie deductions, because it never requires
valid conclusions to be withdrawn – not even if they are
false; it treats conditional assertions implausibly; and it
yields many vapid, although valid, conclusions. A new
paradigm of probability logic allows conclusions to be
withdrawn and treats conditionals more plausibly,
although it does not address the problem of vapidity.
The theory of mental models solves all of these prob-
lems. It explains how people reason about probabilities
and postulates that the machinery for reasoning is itself
probabilistic. Recent investigations accordingly suggest
a way to integrate probability and deduction.

The nature of deductive reasoning
To be rational is to be able to make deductions – to draw
valid conclusions from premises. A valid conclusion is one
that is true in any case in which the premises are true
[1]. In daily life, deductions yield the consequences of rules,
laws, and moral principles [2]. They are part of problem
solving, reverse engineering, and computer programming
[3–6] and they underlie mathematics, science, and tech-
nology [7–10]. Plato claimed that emotions upset reason-
ing. However, individuals in the grip of moderate emotions,
even those from illnesses such as depression or phobia,
reason better than controls, although only about matters
pertaining to their emotion [11,12]. Deductive reasoning is
an ability that varies vastly from one person to another,
correlating with their intelligence and with the processing
capacity of their working memory [13–15]. Our topic is the
cognitive foundation of deductive reasoning, and we ask
two fundamental questions:
(i) Does deduction depend on logic [16–20]?
(ii) How does deduction fit together with probabilities?

The first question is timely because of proposals that
probability is the basis of human reasoning [21–23]. The
second question has engaged theorists from the economist
John Maynard Keynes [24] onward. Here we address both

questions. We begin with logic (see Glossary) and present
the arguments that logic alone cannot characterize deduc-
tive competence. These arguments motivated the turn to
probability – a pivot that its proponents refer to as the ‘new
paradigm’ [25–29]. Next, we outline the theory of mental
models [30–34], which combines set theory with psycho-
logical principles. Finally, we present recent studies that
suggest how to integrate deduction and probability.

Problems for logic as a theory of deductive reasoning
An ancient proposal is that deduction depends on logic (see
also [16–20]). Sentential logic concerns inferences from
premises such as conjunctions (‘and’) and disjunctions
(‘or’). Like most logics, it has two parts: proof theory and
model theory [35]. Proof theory contains formal rules of
inference for proofs. One major rule of inference in most
formalizations is:

A ! C
A
therefore, C

where A and C can be any sentences whatsoever, such as:
‘2 is greater than 1’ ! ‘1 is less than 2’.

Proof theory specifies rules containing logical symbols
such as !, but not their meanings. Model theory defines
their meanings. It specifies the truth of simple sentences
such as ‘2 is greater than 1’ with respect to a model, such as
the natural numbers, and the truth of compound sentences
containing connectives, such as !, which is known as
material implication. The meaning of A ! C is defined
as follows: it is true in any case except when A is true and C
is false [1] and so it is analogous to ‘if A then C’. This
definition can be summarized in a truth table (Table 1).
Model theory therefore determines the validity of infer-
ences: a valid inference is one in which the conclusion is
true in all cases in which the premises are true.

Logic is extraordinarily powerful and underlies the
theory of computability [35–37]. Many cognitive scien-
tists have accordingly supposed that human reasoning
depends on unconscious formal rules of inference [16–
20]. The hypothesis is plausible, but it runs into three
difficulties.

First, conventional logic is monotonic; that is, if an
inference is valid, its conclusion never needs to be with-
drawn – not even when a new premise contradicts it. A
contradiction validly implies any conclusion whatsoever
[1]. However, human reasoners faced with a solid fact tend
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to withdraw any conclusion that it contradicts. Some the-
orists therefore defend so-called ‘non-monotonic’ or ‘defea-
sible’ logics developed in artificial intelligence, which allow
conclusions to be withdrawn [38–42].

Second, conditional assertions (e.g., ‘If she insulted him
then he’s angry’) occur in all sorts of reasoning. However,
they do not correspond to any connective in sentential logic.
Theorists have treated them as material implications [16–
19], but this interpretation yields deductions of the follow-
ing sort:

He’s angry.
Therefore, if she insulted him then he’s angry.

As the truth table for A ! C shows (Table 1), whenever C is
true, the material implication is true. The preceding infer-
ence is therefore valid on this interpretation. It is also valid
to infer a material implication from the falsity of A; for
example:

She didn’t insult him.
Therefore, if she insulted him then he’s angry.

However, people usually reject both sorts of inference [43],
which are called the ‘paradoxes’ of material implication.
They are a major motivation for alternative foundations for
human reasoning [21–23,25–29].

Third, logic yields infinitely many valid conclusions from
any set of premises but many of them are vapid, such as a
conjunction of the same premise with itself some arbitrary
number of times; for example, ‘A, therefore, A and A and A’.
Logic alone cannot characterize sensible inferences
[8,30,31]. Psychological theories based on logic therefore
resort to extralogical methods to prevent vapid inferences
[18–20]. No one knows to what degree these methods work
without preventing useful inferences.

A further practical difficulty is that formal rules of
inference apply, not to sentences, but to logical forms that
match those of the formal rules of inference. No computer
program exists for extracting logical forms from sentences
in natural language, let alone from the propositions that
sentences express in context. No one knows in full how to
identify these forms from their shadows cast in sentences
[44].

Probability logic
As a consequence of the preceding arguments, some cogni-
tive scientists propose that probability should replace
logic. Their theories differ in detail but overlap enough
to have a label in common – the new paradigm [25–29]. We
refer to the paradigm as ‘probability logic’ or ‘p-logic’ for
short. It presupposes that degrees of belief correspond to
subjective probabilities [45–49], an idea that not all psy-
chologists accept [50,51]. It focuses on conditionals, and
one p-logician even allows that conventional logic could
apply to other sorts of assertion [47]. P-logic’s proponents
engage with four main hypotheses.

First, individuals fix their degree of belief in a condi-
tional, using Ramsey’s test [45]. To assess, say, ‘If she
insulted him then he’s angry’, they add the content of
the if-clause (she insulted him) to their beliefs and then
assess the likelihood of the then-clause (he’s angry).

Second, Ramsey’s test or an analogous concept of
a conditional event [46] defines the conditions in which
a conditional is true or false. As Table 1 shows, they yield

Glossary

Bayesian net: a directed graph in which each node represents a variable and

arrows from one node to another represent conditional dependencies. It

captures the complete joint probability distribution in a parsimonious way.

Consistency: a set of assertions is consistent if they can all be true at the same

time.

Counterexample: in an inference, a possibility to which the premises refer but

which is inconsistent with the conclusion.

Deductive reasoning: a process designed to draw a conclusion that follows

validly from premises; that is, the conclusion is true in any case in which the

premises are true.

Defeasible logics: also known as ‘non-monotonic’ logics. Unlike conventional

logic, they allow conclusions to be weakened or withdrawn in the face of facts

to the contrary.

Defective truth table: a truth table for a conditional, ‘if A then C’, that has no

truth value when A is false (also known as the de Finetti truth table).

The Equation: the probability of a conditional, ‘if A then C’, equals the

conditional probability of ‘C given A’.

Fully explicit model: unlike a mental model, it represents a possibility depicting

each clause in the premises as either true or not. The fully explicit models of a

disjunction, ‘A or B but not both’, accordingly represent a conjunction of two

possibilities: possibly(A & not-B) & possibly(not-A & B).

Kinematic model: a mental model that unfolds in time to represent a temporal

succession of events.

Logic: the discipline that studies the validity of inferences. There are many

logics, normally comprising two main components: proof theory, which

stipulates rules for the formal derivation of proofs; and model theory, which is

a corresponding account of the meanings of logical symbols and of the validity

of inferences. In sentential logic, each proof corresponds one to one with a

valid inference, but for other, more powerful logics not every valid inference

can be proved.

Logical form: the structure of a proposition that dovetails with the formal rules

of inference in a logic. No computer program exists to recover the logical form

of propositions in daily life.

Material implication: a compound assertion in logic whose truth table is

presented in Table 1 in main text. It is sometimes taken to correspond to a

conditional, ‘if A then C’. This view leads to logically valid but unacceptable

‘paradoxes’ such as that C implies ‘if A then C’.

Mental model: an iconic representation of a possibility that depicts only those

clauses in a compound assertion that are true. The mental models of a

disjunction, ‘A or B but not both’ accordingly represent two possibilities:

possibly(A) and possibly(B).

Model theory: the component of a logic that accounts for the meaning of

sentences in the logic and for valid inferences.

Modulation: the process in the construction of models in which content,

context, or knowledge can prevent the construction of a model and can add

information to a model.

Monotonicity: the property in conventional logic in which further premises to

those of a valid inference yield further conclusions.

New paradigm: see probabilistic logic.

Probabilistic logic (p-logic): a paradigm for reasoning that focuses on four

hypotheses: Ramsey’s test, the defective truth table, the Equation, and p-

validity.

Proof theory: the branch of a logic that provides formal rules of inference that

can be used in formal proofs of conclusions from premises.

P-validity: an inference is p-valid if its conclusion is not more informative than

its premises.

Ramsey’s test: to determine your degree of belief in a conditional assertion,

add its if-clause to your beliefs and assess the likelihood of its then-clause.

Recursive process: a loop of sequential operations performed either for a

predetermined number of times or while a particular condition holds. If it has

to be conducted an indefinite number of times, as in multiplication, it needs a

working memory to hold intermediate results.

Syllogism: a form of inference that Aristotle formulated based on two premises

and a conclusion, which each contain a single quantifier, such as ‘all A’, ‘no A’,

or ‘some A’.

Systems 1 and 2: the two systems of reasoning postulated in dual-process

theories of judgment and reasoning, in which system 1 yields rapid intuitions

and system 2 yields slower deliberations. Many versions of the theory exist.

Truth table: a systematic table showing the truth values of a compound

assertion, such as a conjunction, as a function of the truth values of its clauses.

Validity: in logic, an inference is valid if its conclusion is true in every case in

which its premises are true. In everyday reasoning, its premises should also be

true in every case in which its conclusion is true.

Vapid deductions: valid inferences that yield useless conclusions, such as the

conjunction of a premise with itself.
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is, a model of the premises that is inconsistent with the
conclusion. The mental model theory, however, is based on
three psychological principles [31–33,60]. First, each men-
tal model represents a distinct set of possibilities. For
example, the disjunction:

Pat visited England or she visited Italy, or both
has three mental models, which we abbreviate using the
names of Pat’s destinations, although in reality models
represent situations in the world:
1. England
2. Italy
3. England Italy
Second, mental models represent only what is true in a

possibility: what is false is left implicit. For example, the
first model above does not represent that it is false that Pat
visited Italy. This ‘principle of truth’ reduces the load on
processing but yields systematic fallacies, which we illus-
trate below.

Third, with deliberation reasoners can use the meaning
of assertions to flesh out mental models into fully explicit
models. For the disjunction above, they are:
1. England not-Italy
2. not-England Italy
3. England Italy

The disjunction is true provided that each of these three
cases is possible. Content, context, and knowledge can
modulate fleshing out. For example, with a disjunction
such as:

Pat visited Milan or she visited Italy
modulation blocks the model of Pat visiting Milan but not
Italy because it is impossible, and so the assertion has only
these two models of her visits:
1. Milan Italy
2. Italy.
Like other ‘dual-process’ theories (e.g., [26,61–64]), the

mental model theory depends on two systems. System
1 constructs mental models. It is rapid but often errs
because it cannot use working memory to store intermedi-
ate results. System 2 has access to working memory and so
can perform recursive processes such as the construction of
fully explicit models, but is fallible when working memory
becomes overloaded. Nevertheless, valid inferences deriv-
ing from mental models should be easier than those re-
quiring fully explicit models [60]. One of the theory’s major
differences from logic and p-logic is that reasoning can
depend on kinematic models that unfold in time [8,30–33].
Box 2 illustrates how they work.

Mental models solve the three problems for logic. The
first problem is that everyday reasoning is not monotonic.
Suppose, for instance, you believe that:

If someone pulled the trigger, then the gun fired.
Someone pulled the trigger.

However, you then discover that, in fact:
The gun did not fire.

What would you infer? Most people try to explain what
might have happened [65] and conclude, for example, that:

Someone emptied the chamber and so there were no
bullets in the gun.

Hence, contrary to many philosophical accounts (following
[66]), individuals do not always accommodate an inconsis-
tent fact with a minimal change to their beliefs [67]. In-
stead, they simulate what might have happened,
generating a mental model (or models) of the situation
that explain the inconsistency [65], and they rate such
explanations as more probable than minimal changes
[68]. Explanations of this sort depend on mental models
and have the advantage of providing a guide to action.
Neither non-monotonic logic nor p-logic creates explana-
tions.

The mental model theory requires no special logic for
the task ( pace [38–42]). Simulation can be performed
within a protected environment – an intellectual laborato-
ry to try out hypotheses – to model other individuals’
inferences, to envisage causal interventions or counterfac-
tual possibilities, and to explain inconsistencies [65,68–
70]. As a computer implementation shows, models are
crucial at all stages [65]. First, an inconsistency is detected
between the premises and the fact: they have no model in
common. Facts weaken a belief that has a mental model
inconsistent with them and so the fact that the gun did not
fire weakens the conditional belief above rather than the
categorical belief. The facts are accordingly updated to:

Someone pulled the trigger and the gun did not fire.
Finally, these facts trigger a search in knowledge for an
explanation, where knowledge itself takes the form of fully

Box 1. The application of p-logic to syllogistic reasoning

Aristotle formulated the logic of syllogisms. These dominated logic

for two millennia and the psychology of reasoning for many

decades. They have two premises and a conclusion, each in one

of four moods: ‘all A are B’, ‘no A is a B’, ‘some A are B’, or ‘some A

are not B’. For example:

Some Greeks are men.

Some men are athletes.

An end term (e.g., ‘Greeks’) is in one premise, whereas a middle

term (e.g., ‘men’) is in both premises. Middle terms have four

possible arrangements, depending on whether they are first or last

in each premise. Hence, there are 64 possible pairs of premise: 27 of

them yield valid deductions interrelating the end terms and 31 yield

p valid inferences [114]. Syllogisms vary vastly in difficulty: 7 year

old children can cope with the easiest, whereas adults struggle with

the hardest [88]. Given the premises above, many reasoners infer:

Therefore, some Greeks are athletes.

The inference is invalid, because the men who are Greeks need not

be the men who are athletes. According to the ‘probability heuristics

model’ [114], the inference is not a failure in logical reasoning but a

success in p logic, because p(Greek & athlete) > 0. Granted that

premises can be ranked in order of decreasing informativeness (‘all’,

‘most’, ‘few’, ‘some’, ‘none’,’ some are not’), reasoners can use

three main heuristics to converge on p valid conclusions.

(i) The preferred conclusion has the same quantifier as the least

informative premise. In our example, the two premises have the

same quantifier and so the preferred conclusion is one with the

quantifier ‘some’, too.

(ii) The next most preferred conclusion is a p valid implication of

the preceding conclusion; for example, ‘Some  are not .’

(iii) If the least informative premise has an end term as its subject, it

is the subject of the conclusion; otherwise, the end term in the

other premise is the subject of the conclusion.

The virtue of p logic is that it extends to quantifiers, such as ‘most

A’, that are outside traditional syllogisms and that cannot be defined

using the standard quantifiers of ‘first order’ logic in which variables

range over individuals but not over properties (i.e., sets of

individuals) [126]. The preceding heuristics and two other less

important ones yield predictions about the conclusions that reason

ers should draw for each of the 64 possible pairs of syllogistic

premises. We assess these predictions below.
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conditional probabilities tend to violate the complete joint
probability distribution (see below).

Conditionals have a defective truth table. Some experi-
ments corroborate its predictions (e.g., [72]) but others do
not [73]. Also, consider this conditional:

If God exists then atheism is wrong.
It is true. Its defective truth table (Table 1) therefore
implies that its if-clause is true:

Therefore, God exists.
The inference is a valid deduction from a true premise and
so is a sound proof for the existence of God. One way to
avoid such bizarre proofs is to abandon truth for ‘truthi-
ness’ and to treat the meaning of conditionals as condition-
al probabilities satisfying the Equation. This solution
seems implausible, because conditionals can certainly be
true (and false). Nevertheless, some theorists have
endorsed it [21,47] or analogous proposals [74].

The probability of ‘C if A’ equals the conditional proba-
bility of ‘C given A’. Some studies support the Equation,
although to varying degrees [54,75–80], and others do not
[81,82]. It may fail because of ignorance of the probability
calculus: a recent study reports that the judgments of only
a minority of well-educated individuals corroborated it and
only for some sorts of conditional [83].

Reasoners rely on p-validity in which a conclusion is
never more informative than its premises. The hypothesis
explains the acceptance of certain invalid conclusions but,
as we show presently, its account of syllogistic reasoning
(Box 1) is of only middling accuracy.

The theory of mental models makes three crucial
predictions that distinguish it from other accounts, as
follows.

The principle of truth predicts the occurrence of system-
atic fallacies. They can be compelling cognitive illusions.
Some of them concern conditionals [84] and are sometimes
open to alternative explanations, but those based on dis-
junctions are hard to explain without the principle of truth
[85–87]. Consider, for example, this problem:
1. Either the pie is on the table or else the cake is on the

table.
2. Either the pie isn’t on the table or else the cake is on the

table.
Could both of these assertions be true at the same time?

Most people answer ‘yes’: the mental models of both asser-
tions represent the cake on the table [87]. However, the
fully explicit models of the two disjunctions have no model
in common:

1. 2.
pie not-cake not-pie not-cake

not-pie cake pie cake
Hence, the correct answer is ‘no’. Participants tend to be
wrong about such illusory inferences but to be right about
control inferences for which mental models yield the cor-
rect answer.

Reasoners should spontaneously use counterexamples to
refute invalid deductions. They do so most often to refute
conclusions that are consistent with the premises but that
do not follow from them [88–90]. Figure 1 shows a particu-
lar region of the brain, the right frontal pole, that becomes
active in reasoning only during a search for counterexam-
ples [91].

Valid inferences should be easier from mental models
(system 1) than from fully explicit models (system 2). They
should be faster and more accurate. Experiments have
corroborated this prediction for all of the main domains
of reasoning, including reasoning about spatial, temporal,
sentential, and quantified relations. Table 3 cites studies
examining these three predictions.

A small demonstration may help you sharpen your
intuitions. Would you accept or reject the following infer-
ence?

Viv visited Ireland or Scotland, but not both of them.
Therefore, Viv visited Ireland or Scotland, or both of
them.

If you reject this inference, neither logic nor p-logic
explains your reasoning because the inference is both valid
and p-valid. It is valid because the conclusion holds in any
case in which the premise holds [1]. It is p-valid because the
conclusion holds in both cases in which the premise holds
and in an additional case, and so the conclusion is less
informative than the premise [47]. However, the inference
is not valid in the model theory because the two cases to
which the premise refers do not establish that it is possible
that Pat visited both countries. So, mental models explain
your rejection of the inference and other similar examples.

Box 3. Mental models of conditionals

A conditional such as:

If it rained then it was cold

has the mental model:

rain cold

However, deliberation can lead to its fully explicit models [71,128],

which are summarized in Table 1 in main text:

rain cold

not rain not cold

not rain cold

The same order occurs developmentally in children’s interpretations

of conditionals and the capacity of working memory predicts the

number of possibilities that they envisage [129,130]. Modulation can

block any model of a conditional [71]. For example, ‘If it rains then

it’ll pour’ has no model in which it pours but does not rain, because

the meaning of ‘pours’ implies that it rains. If modulation blocks a

conditional’s mental model, however, it refutes the conditional.

Experiments have corroborated modulations, including those that

establish temporal and spatial relations between the events that a

conditional describes [71,131,132].

Basic conditionals  those unaffected by modulation  refer to the

three possibilities above. They are analogous to the truth table for

material implication (see Table 1 in main text) and that analogy has

misled many theorists into supposing that the model theory treats

basic conditionals as material implications (e.g., [23,71,75,79]). On

the contrary, it implies that a basic conditional, ‘if A then C’, is true

only if all three situations in its fully explicit models are possible:

possibly(A & C) & possibly(not A & not C) & possibly(not A & C)

and A & not C is impossible. The conjunction of possibilities, which

is the proper interpretation, shows that the paradoxes of material

implication are invalid in the theory of mental models. Neither the

falsity of A nor the truth of C implies that ‘A & C’ is possible and so

neither of them implies ‘if A then C’. The conjunction also reveals

the flaw in the proof in the main text for the existence of God: the

truth of a conditional ‘if A then C’ implies that A is possible, not that

it is true. Consider the conditional:

If God exists then atheism is correct (if A then C).

Atheism means that God does not exist and so modulation blocks

the model of the possibility ‘A & C’. The conditional is therefore

false. However, unlike material implication or the defective truth

table, its falsity does not imply that A is true. ‘A & C’ is impossible

and so A may not be true.
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(see the results in [123–125]). It leaves open several out-
standing questions (Box 5). However, it does argue that
counterexamples are fundamental to human rationality.
So, if counterexamples to its principal predictions occur,
the theory will at least explain its own refutation.
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